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MECHANISM OF ARMOR PENETRATION 

Fourth Partial Report 

! OBJECT 

To lay a rational foundation for the mechanics of 
armor penetration, 

- SUMMARY 

A method is outlined for computing the stresses and 

the deformation in armor during projectile impact, The 

primary problem in this computation is the evaluation of 

the effect of the plate material's inertia« 

As a first approximation in the evaluation of |he 

_ effect of the plate's inertia, the force acting upon the 

plate is assumed to be so distributed as to give rise to 

no localized plastic deformation. Both the motion and 

^ the bending moment of the plate may then be computed lnr 

the region where the force is applied. While the normal 

velocity of the plate Is directly proportional to the 

force, the bending moment, under conditions of combat, 

increases continuously if the force is maintained constant. 

As a second approximation In the evaluation of the 

effect of the plate's inertia, the region of impact is 

assumed to be so supported as to give the velocity of the 

plate and the bending moments computed in the first ap- 

proximation. The deformation is then assumed to be in the 

w* 
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nature of a static penetration under adiabatic conditions 

of plastic flow. The inertial resistance of the plate 

material associated with this plastic deformation may 

thereby be computed from the solution of the problem of a 

projectile being pushed slowly through a plate. At high 

velocities it is found that this inertial resistance has a 

high peak at the instant of impact, the peak being higher 

the blunter the projectile. This high initial inertial re- 

sistance may give rise to shatter of projectiles striking 

homogeneous armor.  This peak may be smoothed out, and 

the tendency to shatter thereby lessened, by an A,P. cap. 

When the impact of the projectile is too abrupt, 

which may arise either through a very high striking ve- 

locity or through a blunt ogive, the above approximation 

methods are no longer valid.  In such cases the wave 

propagation of stress must be considered. Examples are 

given of the effect of such waves both in the plate and 

in the projectile.  In the plate they may give rise to 

spalls being thrown off the back of the plate.  In the case 

of tne projectiles these waves may result in the detach- 

ment of the front of the ogive. 
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INTRODUCTION 

The foundations of the mechanics of armor pene- 

tration lie in the simultaneous solution of the equations 

of motion of the projectile material and of the plate 

material. The response of an A.P. projectile to a given 

force may be calculated, to a good approximation, by 

considering the projectile as an elastic body.  This 

assumption allows the calculation of the general features 

of the stress inside a projectile during impact, and 

from this knowledge a rational system for projectile 

design is being formulated which reduces to a minimum the 

likelihood of projectile deformation or fracture during 
2 

penetration.  In this approximation the projectile is 

regarded essentially as a rigid body, and therefore its 

equations of motion are readily soluble. On the other 

hand, the equations of motion of the plate, which neces- 

sarily undergoes plastic deformation, are so complex 

that exact solutions are not to be expected. Neverthe- 

less it is believed that a better understanding of the be- 

havior of the plate may be obtained by -Unding, through 

Y.    C. Zener and R. E. Peterson:  "Principles of Projectile 
Design for Penetration, First Partial Report", Report 
Number WAL 762/231. 

2.  Series of reports on "Principles of Projectile Design 
for Penetration". 
C. Zener and J, Sullivan, Second Partial Report, Report 
Number WAL 762/231-2. 
D. Van Winkle, Third Partial Report, Report Number 
WAL 762/231-3. 
D. Van Winkle, Fourth Partial Report, Report Number 
WAL 762/231-4.. 
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Judicious assumptions, approximate solutions to the 

fundamental equations rather than by guessing at the 

plate's behavior based solely upon observations of the 

plate after penetration has occurred. It is the purpose 

of the present report to furnish a guide in the making 

of such approximations. 

The problem of the reaction of the plate to the pro- 

jectile would be greatly simplified if attention could be 

concentrated upon the plate material in the immediate vi- 

cinity of the projectile. This simplification is ac- 

complished by first solving the equations of motion of the 

plate material outside the immediate vicinity of the pro- 

jectile, l*e., outside the region where the material 

undergoes plastic deformation, and then replacing this 

material by an equivalent support. 

If the velocity of the projectile is not too great, 

the equations of motion of the plate material surrounding 

the projectile may be simplified by neglecting the 

lnertial terms, i.e., the acceleration of the plate ma- 

terial. The problem of plate response then reduces to tho 

comparatively simple problem of static penetration under 

known conditions of support, the deformation being re- 

garded as occurring adlabatlcally (no heat flow). These 

lnertial terms in the equations of motion are unfortu- 

nately often not negligible under the conditions likely 

to be encountered in combat. The effect of these lnertial 

-6- 
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terms Is to increase the force with which the plate 

reacts upon the projectile at the first Instant of impact, 

and it is this increase in force which is the cause for 

projectile shatter.  When these lnertial terms are not 

negligible, it is possible, at not too high velocities, 

to estimate their effects by a simplification which 

regards the type of motion of the plate material as 

Independent of the incident velocity. In this case the 

problem of the plate's response again reduces to the 

problem of solving the equations for the plate material 

under essentially static conditions; and finally using 

the solutions ?o obtained to compute the effects of the 

material's inertia. Under more severe conditions the 

lnertial terms have an appreciable effect upon the type 

of deformation, i.e., the actual propagation of stress 

must be considered. An attempt Is made to describe the 

reaction of the plate in such extreme cases, and typi- 

cal consequences of stress waves are cited. 

RESULTS AND DISCUSSION 

I GROSS BEHAVIOR OF PUTE 

Armor with no inertia would behave in a radically 

different manner than does actual armor. No type of pro- 

jectile could penetrate, or even scratch, a freely sus- 

pended armor plate with no Inertia. Such a plate would 

acquire the velocity of the projectile at the first 

T~.    C. Zener:  "Mechanism of Armor Penetration, Third 
Partial Report", Report Number WAL 710/^92-1. 
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instant of contact, not allowing it to exert any force 

whatsoever. Armor plate without inertia if rigidly 

supported at its boundaries would respond to a projectile 

impact in precisely the same manner as if a force were 

slowly applied. Such a plate would suffer extensive 

bending. The inertia of actual armor plates, that is, 

their resistance to acceleration, acts to a first approxi- 

mation as a support during projectile impact. 

The concept of plate support is not, however, without 

ambiguity. Reference to Figure 1 shows that the effect 

of a support depends not only upon its rigidity but also 

upon the "tolerance" of the support and the projectile. 

Thus in a die with a small tolerance, a plate which is 

being punched suffers a nearly pure simple shear type of 

deformation. On the other hand, when the clearance is 

sufficiently large, the initial deformation of the plate 

is nearly of the pure bending type. It is not clear, 

without analysis, whether the support offered by the plate 

inertia is of the close tolerance or of the large toler- 

ance type, in other words, whether the plate's response 

to a projectile impact is governed by shearing stresses 

or by bending moments. Such questions are answered by 

the analysis in the following sections. 

In the study of the gross behavior of a plate sub- 

jected to projectile impact, the boundary effects at the 

edges of the plate introduce only complicating irrele- 

vancles.  These irrelevancies say be avoided by assuming 

-S- 
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the duration of the impact to be so short that the pro- 

jectile is no longer in contact with the plate when the 

elastic waves reach its boundary, or, what amounts to 

the same thing, by assuming the plate to extend laterally 

to infinity. In the following discussion, this second 

concept will be adopted. 

A. Velocity of Region of Impact. 

The elastic response of a laterally infinite plate 

to a concentrated normal force has already been examined 

in some detail.  It was found that when such a force is 

applied, the plate is displaced normally at the point of 

application of the force with a velocity which is pro- 

portional to the force. Thus 

Velocity = a x force (1) 

The proportionality constant a is given by 

.   ri££L=£l J 1/2/y e2 . (2) 

Here  jois the density,   a Poisson's ratio,  E Young's Modu- 

lus,  and e the plate thickness. 

The previous analysis is generalized in Appendix A 

to the case where the force is distributed over the face 

rather than concentrated at one point. Upon taking a 

T.    C. Zener: "The Intrinsic Inelasticity of Large Plates"- 

Physical Review, $%,  669 (194-1). 
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Gaussian distribution,  that is \. 
•_. 

Pressure » (ITS
2
)"

1
    e"*2/*2   f (t)^ (3) 

it is found that the plate displacement at the center of 

Jhe distribution is related to the total force f by 

t 
displacement(t) * a /  G(t-tf) f(t») dt» . (k) j 

- »o 

The function G is unity except for values of its argument 

comparable to, or less than, the time required for an 

elastic stress wave to traverse the distance _§, the distri- 

bution modultff. Its precise form is given by 

G(t) =1*2. tan"1 p/t (5)     » 

where 

p = fa/afl^/Ej !/2. <s2/2e) .    (6) 

In the speoial case of projeotile Impact, where the distri- 

bution modulus s is comparable to the projectile caliber, 

which in turn is comparable to the plate thickness, negli- 

gible error is introduced by taking the function G in 

Equation (k)  as unity. In this case Equation (k)  is 

equivalent to the simple equation (1). 
I 

In all but very exceptional cases, the velocity of 

the plate is only a small percentage of the incident 

velocity of the projectile. As an example, suppose a pro- 
» 

Jectile strikes a matching plate (e/d = 1) at a velocity 

V of 2,000 f/s. The pressure exerted by the projectile 

-10- I ] 
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p 
will be about >0V . Taking this pressure to act over 

an area equal to the cross section of the projectile, 

one finds that the plate velocity is at most only 3$ 

of the incident projectile velocity. 

B. Bending Moment In Region of Impact. 

A corollary of Equation (l) states that when the 

force is removed, the displacement at the original center 

of force distribution remains constant. The motion of 

the plate after the force is removed is depicted sche- 

matically in Figure 2. 

From this figure it is evident that although the 

velocity is zero at the original center of force distri- 

bution, the curvature, and hence the tensile stress at 

the back of the plate, approaches zero only asymptotically 

after the removal of the force. This asymptotic behavior 

suggests the following approach to the computation of the 

bending moment, and hence of the tensile stresses, on the 

back surface of the plate. Let the force f(t) be distri- 

buted over the face of the plate as indicated in 

Equation (3). If this force were non-vanlshing only in 

the time interval At' ftt t', then the tensile stress 

T(t) at any point on the back of the plate would be 

proportional to f(t') and to At', 

T(t) ^f(t') At«  . 

The constant of proportionality ran be a function only 

-11- 
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of the time interval t-t1, thus 

T(t) = g(t-t») f(t») At* 

If now no restrictions are put upon f for times prior 

to t, the linearity of the elasticity equations Insures 

that the contributions to T(t) of f(t*) during all 

previous time elements At* will be additive. Therefore 

T(t) =  / g(t-t') f(t') dt» .     (7) 

The quantity g(t-t') may be called the Influence 

function. Its precise form will depend upon the precise 

manner in which the force is distributed over the face 

of the plate. It is evaluated in Appendix A for the 

particular case of a Gaussian distribution, that is, for 

a symmetrical distribution of the type given by Equation 

(3)* In the Appendix it is shown chat the tensile stress 

on the back surface symmetrically behind the force is 

given by Equation (7) with the following influence funotlon: 

g(r) = (3/^)   (1 + ex)  o"2 ( -rr-r) >      (g) 

where e is the plato thickness, and where 

q = (3l/2/2) (e?/e)  [(1-O)/VEJ 1/2 .    (9) 

Tho quantity q is effectively the time required for an 

elastic wave to travel the distance s2/e. 

As an example of the above analysis, suppose a force 

-12- 
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with the Gaussian distribution of Equation (3) is suddenly 

applied at t = o, and maintained at the constant value f. 

Then the integration of Equation (7) leads to 

T(t) = (f/2TTe2) • ln(l + t2/q2) ,        (10) 

in which equation cr has been replaced by 1/3. A plot of 

T(t) vs. t is given in Figure 3» When t is large compared 

with q, this equation reduces to 

T(t) = (f/tre2) • ln(t/q), t >^ q .       (11) 

The increase of the tensile stress T with time, as 

given by Equation (10) or (11), is the basis for the type 

of projectile used in shock testing plates. In these 

tests it is desired to subject the back of the plate %o 

tensile stresses sufficiently large to cause plastic de- 

formation in tension at the back of the plate, at the 

same time keeping the shearing stresses sufficiently low 

to prevent a punching from being pushed out. The ap- 

propriate stress pattern is obtained by the use of a soft 

projectile which mushrooms upon the plate, thereby pro- 

longing the time of impfcct. 

II DETAILED BEHAVIOR OF PLATE. 

In the first part of this report a study was made 

of the response of the plate as a whole to an applied 

force. The information so obtained will now be used to 

simplify the study of the behavior of the plate material 

-13- 
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immediately surrounding a projectile. This simpli- 

fication is accomplished by replacing the plate material 

outside of a certain cylindrical surface by a rigid 

support, as indicated in Figure k,  with a diameter greater 

than, but comparable to, the caliber of the projectile. 

The boundary conditions at the support are so chosen 

that the support, and hence the inclosed plate, jnove 

normally with the velocity» given by Equation (l), with 

which the plate actually moves at the center of the 

region of Impact, and so that the moment with which the 

support acts on the inclosed plate is equal to the 

moment, whose tensile stresses are given by Equation (i^), 

of the actual plate at the center of the region of 

impact. 

A. Low Velocity Case of Quasi-Static Motion. 

When the above mentioned concept of plate support 

is adopted, the manner in which the plate material is 

deformed at any instant may be regarded as independent 

of the velocity, provided the velocity is not too high, 

and dependent only upon the position and direction of 

notion of the projectile. Thus an increase of velocity 

by a given factor would Increase the rate of strain In 

every element of the plate by the same factor. This 

invariancy of type of deformation with projectile ve- 

locity does not necessitate an Invariancy of stress 

distribution with velocity.  In fact, due to the inertia 

-14- 
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of the plate material, the stress pattern gradually 

changes with projectile velocity. The stress pattern may 

be regarded as that arising from the forces due to the 

projectile, the support, and a certain distribution of 

body forces« The body force acting upon each element of 

volume is considered to be the mass of the element, multi- 

plied by the negative of its acceleration. 

The effect of the inertia of the plate material in- 

side the assumed support upon the force with which the 

plate reacts on the projectile may be readily computed 

without explicitly computing its effect on the stress 

pattern throughout the plate. It is only necessary to 

compute the total kinetic energy of the plate, K.E,, as a 

function of the velocity and position of the projectile. 

The partial derivative of this kinetic energy with respect 

to a spatial coordinate of the projectile gives the 

component of force acting along the negative axis of this 

coordinate. 

The above mentioned method of computing the effect of 

the plate material's inertia upon the force with which it 

resists penetration may be most simply illustrated by the 

case of normal incidence. In this case the force is 

normal to the plate, and is directed along the axis of the 

projectile. Let s be the distance which the projectile 

has penetrated into the plates. Then that portion of the 

plate,s resistance which is due to its inertia is given 

-15- 
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by the following equation: 

Inertial force = jL (K.E.) .       (12) 
äs 

Special significance is to be attached to the notation 

of the partial derivative. The kinetic energy is a 

function not only of the positional variable s, but also 

of the velocity V. In the differentiation of Equation 

(12), cognizance is not to be taken of the fact that V 

varies with sf but V is to be held constant. The klnetio 
p 

energy will be proportional to yoV , where /* le  the 

density of the plate material. Thus 

K.E. = A(s)/oV2 . (13) 

The constant of proportionality A has the dimension of 

volume. 

The plate'8 kinetic energy, and the inertial force 

associated therewith, are plotted schematically In 

Figure 5 for projectiles with two types of ogives. For 

all types of ogives the inertial force has one common 

characteristic, the area beneath the inertial force vs. 

penetration distance is identically zero. Thus this force 

opposes the projectile as it enters the plate, but aids 

the projectile as it leaves. The kinetic energy function 

changes In a characteristic manner as the ogive of the 

projectile is made blunter; the maximum value is raised, 

and the initial rise is steeper. These changes In the 
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kinetic energy function are reflected in the inertlal 

force function by a sharp rise in the initial part. 

The initial high inertlal force may, when added to 

the force arising from the resistance of the plate's 

material to plastic deformation, be so high as to give 

rise to projectile shatter.  In attack against homo- 

geneous armor, it is the function of A.P. caps to lower 

the initial inertlal pressure. This lowering is effected 

by a smoothing of the initial rise in kinetic energy, as 

illustrated in Figure 6, which smoothing results from the 

effective lengthening of the time required for the ogive 

to dig completely into the plate. In contradiction to 

the above interpretation of the action of A.P. caps, it 

is commonly stated that the function of an A.P. cap is 

to lend lateral support to the projectile. In order to 

demonstrate the correctness of the first point of view, 

namely the smoothing out of the Initial inertlal force, 

projectiles were made whose ogives were flattened cones. 

The shatter characteristics of these projectiles were 

examined for the two cases of bare ogives and of ogivos 

protected by caps on the flat faces.  (The caps were 

disks of copper 1/32" thick). A comparison of their be- 

havior is presented in Figure 7» Since the A.P. caps on 

these projectiles did smooth out the initial inertlal 

force, while they could not provide lateral support, it 

is apparent that, at least in these cases, the action of 

»'■«■•■«■■ - •■«*.. -1 



1 r-"i U "* 3T" j- W-T; ■yj^i« f^XT' * '••"""J * 'j " '<' ^"»" 'J ''J'"'.1* j'"^'';l>'J»,|r;>l,"Tl;f ■ f.'r^ir; fiipyif lyiy^ yw 

A,P. caps ig related to the initial inertial force. 

In the case of oblique impact the inertial force of 

the plate reacting upon the projectile is no longer 

directed along the projectile's axis. Any component of 

this force may be computed by an equation analogous to 

Equation 12. Thus suppose one wishes to know the component 

of the inertial force normal to the surface of the plate. 

Letting x denote the position of the center of gravity of 

the projectile from the plate, one then has 

(Inertial force) =^ (K.E.) 
normal component  «x 

The interpretation of the differentiation in this equation 

is given in Figure 2>. Thus consider a fictitious pro- 

jectile which has the same orientation and the same ve- 

locity as the actual projectile, but which is displaced 

with respect to the plate by the distance Ax. Let AK.E. 

be the increase of the kinetic energy of the plate in 

the case of the fictitious projectile over that caused by 

the actual projectile. Then dK.E./jx denotes the limit 

of the ratio AK.E./Ax as Ax approaches zero. 

B. High Velocity Case of Stress Waves. 

In the previous section It was assumed that the strain 

distribution in the plate material Immediately surrounding 

a penetrating projectile wct6 independent of the projectile's 

velocity.  This assumption enabled us, at least in princi- 

ple, to compute the changes in stress distribution arising 

-IS- 
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from the inertia of the plate material. When this change 

in stress distribution becomes so great that the elastic      -V 

strain associated therewith makes an appreciable change 

in the deformation, the original simplifying assumption 

of quasi-static deformation is no longer valid. An 

accurate description of the plate's behavior can then be 

obtained only by an analysis of the fundamental equations 

of motion of the plate material. ';'■'. 

Some very important qualitative conclusions may be 

drawn merely from a consideration of the general nature 

of the solutions to the fundamental equations of motion 

of the plate material. The following properties of these 

solutions are of particular Importance to the present dis- 

cussion. 

1. Stress and deformation are propagated with a finite 

velocity. 

2. When a stress wave reaches a free surface, a 

stress wave of opposite sign Is reflected (e.g., 

a compress!ve wave is reflected as a tensile wave). 

The first property makes it possible for an impulsive 

compressive wave to exist in the plate. Thus suppose that, 

due to the plate material's inertia, the projectile exerts 

a very large force upon the plate for a very short interval 

of time At. The product of At and of the velocity of stress 

propagation, c, gives the length, Ax, of the compreesive 

stress impulse, 

Ax = c At . 

-19- 
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If the time interval At is so short that Ax is less than     ;.;■;. 

the plate thickness, the projectile sets up an impulsive     ,';_.[ 

compressive wave running across the plate. The time 

interval At is shorter the higher the striking velocity 

and the blunter the ogive. 

The second property is responsible for the trans-       _.-, 

formation of a compressive impulsive wave travelling ;-/ 

towards the back of the plate into a tensile impulsive wave   ;>.' 

travelling from the back to the face of the plate  If the 
» 

fracture stress of the plate is sufficiently low across a 

plane parallel to the plate, this tensile wave will result 

in the throwing off of a lamination. Examples are shown 
i 

in Figure 9- In this figure is shown the change In the 

type of plate failure as the velocity of the projectile 

was raised. The ogive of the projectile was sufficiently 

blunt so that, at the lower velocities, a punching was       ■;-> 

found. At higher velocities, a distinct circular lami»-      v> 

nation was thrown off the back of the plate. "X 

The force with which the projectile acts upon the 

plate is exactly equal to the force with which the plate 

acts upon the projectile. It is therefore to be expected     — ^ 

that an Impulsive conpresslonal wave will run down the 

projectile in an opposite direction to that of the coo- 

pre88lonal wave In the plate.  This compressional wave Is 

reflected at the base of the projectile as a tensile wave. 

As this tensile wave travels back into the ogive, the 
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intensity of the stress increases as the area of the wave 

front decreases. If the intensity of the tensile stress 

reaches the fracture stress of the projectile material, 

fracture will result. An example of such a fracture is 

shown as Figure 10. 

The assumptions of quasi-static deformation break down 

completely when the projectile presents a flat or curved 

surface to the plate. In such cases the assumption of 

quasi-static deformation would imply that the plate material 

acquired a finite kinetic energy in an infinitesimal 

interval of time at the moment of Impact. In order to 

estimate the magnitude of the pressure which actually ex- 

ists between the projectile and the plate in such cases, 

a detailed analysis is necessary. The results of such an 

analysis are discussed below. 

Just after the projectile has made contact with the 

plate, the plate material immediately in front of the area 

of contact moves normally to the plate, lateral motion 

being prevented by the inertia of the plate material. At 

the first Instant of contact one is therefore Justified 

in treating the impact as a one dimensional problem.  It 

may readily be seen that for this case the pressure is 

given by the product (density of materir.1) x (velocity of 

stress propagation) x (velocity of interface of projectile 

and plate).  The velocity of a wave in which transverse 

notion is prevented, and in which the resistance to shear 

-21- 
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deformation may be neglected, is (K//o)  , where K is 

the bulk modulus. This velocity will be denoted by c.        ;\"- 

This velocity Is very nearly equal to the velocity of "'i 

« 
propagation of an elastic wave along a bar. namely i 

16,000 f/s. The Initial velocity of the interface of the 

projectile and plate must be taken as one half of the 

projectile's velocity V, since at the first instant of 

contact a wave of equal magnitude but of opposite direction 

is set up in the projectile. Thus 

initial inertlal pressure = (L/2^ p cV .  (1*0 

This pressure is plotted in Figure 11. 

If the wave motion remained strictly one dimensional, 

the pressure would remain constant at the value given by 

Equation (1^) until the return of a wave reflected from 

a boundary. Actually, the spreading of the wave into 

the transverse directions results in a rapid decrease in 

the pressure» This difference in the behavior of one and 

of three dimensional waves is discussed analytically in 

Appendix B, It is there found that in the three dimensional 

case the initial inertlal pressure decreases exponentially 

from its peak value. Thus, 

-t/*c 
initial inertlal pressure = 1/2 /»cV e 

The tine constant 7- is approximately equal to the ratio of 

the diameter of the contact region to the velocity with 

which the stress wave ie propagated. 
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APPENDIX A 

In this appendix the theory is developed for the 

influence functions, G- of Equation {K)  and g of Equation 

(7), which relate the displacement of the plate, and 

the maximum tensile stress on the back surface, re- 

spectively, of a laterally infinite plate to the force 

acting upon the face. An explicit expression is obtained 

for the particular case of a Gaussian distribution, as 

defined by Equation (3). 

The analysis will follow closely that given by the 

author for the relation between a concentrated force 

acting upon a laterally infinite plate and the velocity 

produced thereby.  In this analysis we start from the 
p 

usual approximate theory of thin plates.  In this theory 

It is assumed that the radius of curvature of the plate 

is everywhere large compared with the plate thickness, 

and that the angle between the plate and the original 

plane is everywhere small.  Upon taking the x,y plane to 

be parallel to the original plane of the plate, one has 

the following approximate equation for the transverse dis- 

placement U(x,y,t) of the plate: 

(Dx£ ♦ m^/öt2) U = Z .      (a-1) 

Tl    C. Zener:  "The Intrinsic Inelasticity of Large Plates", 
Physical Review 59, 669 (19^1). 

2. A. E. H. Loves "^Mathematical Theory of Elasticity". 
(Cambridge, 1927) Fourth Edition, p. 4«7.  " 
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In this equation, m is the mass of a unit area of plate, 

and Z(x,y,t) is the surface density of the normal force. 

The rigidity modulus D is defined by : 

D = (1/12) e3 E\, E« = E/d-o2) , 

where e is the plate thickness, E is Young's Modulus and 

c is Polsson's ratio. The operator -y is defined by the 

following equation: 

I 7
2 - "a2/**2 + ih? • 

In Equation (a-l), Z(x,y,t) is to be regarded as a 

known function, U(x,y,t) as an unknown function. The 

formal solution for U will be obtained in terms of the       ;';• 

eigenfunctions of the auxiliary equation: 

[(D/m)l/2V + w] U(x,y) = 0 ,      (a-2)    I 

and of the boundary conditions at the edge of the plate. 

The eigenvalues and normalized eigenfunctions of these 

equations will be*hoted by Wn and Un, respectively, where 

the suffix n refers to an ensemble of two characteristic 

numbers. The formal solution will therefore be written as    ~- 
r 

U(x,y,t) = Ln Cn(t) Un(x,y) (a-3) 

The general coefficient Cn In the above summation 

will be obtained by substituting this equation for U into 

Equation (a-l), multiplying by Un, and integrating over 
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the entire surface of the plate. Upon using the ortho- 

gonality property of the elgenfunotlons one obtains 

I (d2/dt2 + Wn
2) Cn(t) = m-

1 Zn(t) ,     (*4) 

where 

Zn(t) = / Un Z(x,y,t) dA , (a-5) 

dA denoting an element of area of the plate. 

Corresponding to the condition that the displacement 

■ U, as well as the time derivative of the displacement will 

be taken to be everywhere zero at t = 0, that solution of 

Equation (a-^) will be obtained which satisfies the con- 

ditions 

C = 0 

dC/dt 
at t = 0 (a-6) 

That solution of Equation (a-k)  which satisfies the boundary 

condition (a-6) is 

-1  t 
Cn = (m Wn)   /  Zn(t«) slnWn(t-t«) dt'  .  (a-7) 

o 

The displacement U is now obtained by substituting Cn from 

Equation (a-7) Into Equation (a-3). The result is 

U(x,y,t) = En(m V^)"
1 Un(x,y) 

t 
/ Zn(t') 8lnWn(t-t') dt'      (a~g) 

o 

In computing the stress or the back surface of the 

plate, we need the quantity ^rU. Operating on both sidec 
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of Equation (a-S) with K7 , and using Equation (a-2), 

we obtain 

7
2U = -(mD)"l/2 En Un(x,y) ■/  Z^t') sinWn(t-t') dt4 

(a-g«) 

Before proceeding further with either Equation (a-g) 

or Equation (a-g1), it is necessary to define the shape 

of the plate and to specify the boundary conditions to 

which the plate is subjected. The plate will be taken 

as a square lying in the region 

0 < x < L 

0 < y < L. 

The boundary conditions will be so chosen ihat the plate 

is free to pivot along its edges. The normalized elgen- 

functions of the differential equation (a-2) are then 

U0,k) =  (2/L)    8ln(TTJx/L)    sin(TTky/L)   ,   j,k = 1,2," 

The corresponding eigenwert is 

w(j,k) = (D/m>l/2 (TT
/
L

>
2
 

(J2 + *2>.     <*-9) 

The surface density of force Z(x,y,t) will be taken 

as given by p of Equation (3), with the center of the 

distribution at the center of the plate, i.e., at 

x = L/2, y = L/2. At the center, UM k} i6 different from 

zero only when both J and k are odd. When J and k are 

both odd one obtains, using Equations (a-5) and (a-9), 
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that at center of plate 

u(J,k) z(j,k) = kL~2 f(t) exp{ -^/D)1/2 <*2M W(JU)1 
(a-10) 

This equation for U„ Z is now substituted into H n n 
Equations (a~£>) and (a-S1), and the summation In performed 

over all characteristic numbers J,k. The number of en- 

sembles (J,k) for which both J and k are even, and for 

which W,, » lies in the range dW at W, may be seen from 

Equation (a-2) to be given by 

[L
2
 (m/D)l/2/l6TT ] dW . 

and therefore the summation £_••' may be replaced by an 

integral as follows 

Sn... = [L
2
 (m/D)1/2/^^ 1 / dW •••  (a-11) 

J 0 

Upon applying Equations (a-10) and (a-ll) to Equation 

(a-S), one obtains Equations (4-)-(6) of the text. In 

the Integration with respect to t', one makes use of the 

formula 

/    e~ax x"1    8inx   dx = TT/2 - tan"1 a , 
o 

which may be obtained by Integration of the following 

standard Integration formula with respect to b over the 

range a to OQ: 

/" e'bx alnx dx = l/(b2 + 1) . 
CO 

J 
0 

Applying Equations (a-10) and (a-ll) to Equation 
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(a-g1), one obtains at the center of plate 

p2U =-(iHrD)-1 /  f(t') • (t-t») • Ht-t')2 

o L* 

♦ q8] -1 «• , 
where 

q = (m/D)1/2 a2A . 

Upon utilizing the definitions of m and of D, this 

equation for q is seen to be equivalent to Equation (9). 

It remains to pass from ^/2U to the stresses in the 

back of the plata. If M, and Mg refer to the bending 

moments, per unit length, along two orthogonal directions, 

then1 

V^  + H2 * -D(l + a) 72U , 

where a is Poisson's ratio. In the center of the pressure 

distribution M^ and M2 are equal. Denoting their value 

by M, we therefore obtain 

t 
J 

o 
M= (1 + a) (STT)"*

1
 / f(t') (t-t«) r(t-t')2 
n L 

+ q2 1  ~1 dt' . (a-11) 

In the elastic range the moment M and the tensile stress 

T at the surface are related by 

M = (e2/6) T . (a-12) 

T.    R. V. Southwell: Theory of Elasticity (Oxford. 19^1I. 
p. 230. 
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Upon substitution of Equation (a»12) into Equation (a-ll)# 

one obtains Equation (7) with the influence function g 

given by Equation (S). 
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APPENDIX B 

In this appendix an analysis will be given of the 

difference in pressures necessary suddenly to start a 

boundary moving at a constant velocity in the one 

dimensional case and in the three dimensional case. 

In both cases the medium will be regarded as pos- 

sessing no resistance to shear deformation, i.e., the 

medium will be considered as a perfect fluid. The bulk 

modulus of this fluid will be denoted by K. In the one 

dimensional case lateral expansion will be prevented by 

lateral constraints. 

The equations of motion and the continuity equations 

have the following solutions. 

1. One dimensional case. 

The velocity V and pressure P are given in terms of 

a velocity potential $ through the equations 

V = -   £>$/e>x, (b-1) 

P « K/° 9*/3t  . (b-2) 

The velocity potential depends upon x and t as follows, 

$ = f(x-ct) (b-3) 

where f is an arbitrary function of its argument, and 
o 

where c = KAo.  Substitution of Equation (b-3) into 

Equations (b-l) and (b-2) gives 

P = />cV (b-lJ-) 
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This equation is of general validity, independent of 

the variation of V with time. 

2. Three dimensional case. 

In this case the medium is assumed to extend to 

infinity In every direction, and to contain a spherical 

cavity. The walls of this cavity are further assumed to 

suddenly start to move radially outwards with a constant 

velocity. The pressure on the walls will be computed as 

a function of time. 

The velocity and pressure are given by equations 

analogous to Equations (b-1) and (b-2), namely 

V « - 3$/dr (b-5) 

P = K/O Wdt . (b-6) 

The velocity potential is given by 

$ = f(r-ct) (^y) 
r 

where, as before, f is an arbitrary function of its 

argument. 

Substitution of Equation (b-7) into Equation (b-5) 

leads to 

df/dr -r_1 f = -r V. 

Since the argument of f is r-ct,  the above may be re- 

written as 

"<>f/6>t +  (c/r)f = c r V    . 

IT H. Lamb. Hydrodynamics (Cambridge Press. 1932). Sixth 
edition, p. 469. 
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We now suppose that V is some known function of t at 

r = a. Then at this value of r, 

3f/at + (c/a)f s0aVa . 

We shall seek the solution of this equation which 

vanishes at some definite time, say at t = o . This 

solution is 

,2 -(c/a)t 
f = adVa (1-e     ), r = a . 

Substitution of this equation back into Equation  (b-7) . 

and then into Equation  (b-6),  leads to 

-(c/a)t 
p=/ocVae ,  r = a . (b-$) 

Upon comparing Equations (b-^) and (b-6), we see 

that the pressure starts off with the same values when 

the boundaries begin to move. While the pressure remains 

constant in the one dimensional case, it decreases 

exponentially in the three dimensional case. 

It may be noted that Equation (b-S) is strictly the 

solution to the case where the velocity remains constant 

at r = a, rather than at the moving boundary» This 

difference in problems introduces no essential change in 

the solution. 
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FIGURE   6 
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ILLUSTRATION   OF   HOW   AN    A.P. CAP   REDUCES 

INITIAL   INERTIAL   FORCE 
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FIGURE   8 

ILLUSTRATION   OF  METHOD   OF   COMPUTING    THE 
NORMAL   COMPONENT   OF   INERTIAL  FORCE 

NORMAL   COMPONENT   OF 

INERTIAL   FORCE 

= LtM.    *_<£_ 



FIGURE    9 

ILLUSTRATION    OF EFFECT   OF   REFLECTION 
OF   COMPRESSIVE   WWVE   AT  BACK OF PLATE 

V - 1255 

PURE    SHEAR   PUNCH 

V- 1620 

BACK    SPALL 

(PLATE:-    .30"    HICK,    321 BHNj 
PROJECTILE:-  62 ROCKWELL "C", NORMAL   INCIDENCE). 

WTN.7S1-I4I2 

äSNJdAJ lN3WNdiAUÜ IV UiJIlUUddJd 

—■ ' *■   - -   -   -        -    -•-■■■.--■- .-■.>■■-■ .-...■„.   _^.. •,',_-. ^ ■ i^C I   *    -  * . -. - • . 1 ■■ ■ - - 



FIGURE   10 

ILLUSTRATION    OF EFFECT OF  REFLECTION 
OF COMPRESSIVE  WWE AT BACK OF PROJECTILE 

(PLATE THICKNESS-2"; PROJECTILE   37MM BODY 
WITH POINT ON  OGIVE  BLUNTED; V= 2350 f /S ). 
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FIGURE    II 

INITIAL INERT!AL PRESSURE!   IN: CASE PROJECTILE 
PRESENTS A TANGENT [SURFACE tOFLATE: AT IMFttCT 
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